
STACK

1

2

What is a stack?

 A stack is a Last In, First Out (LIFO) data structure

 Anything added to the stack goes on the “top” of the

stack

 Anything removed from the stack is taken from the

“top” of the stack

 Things are removed in the reverse order from that in

which they were inserted

3

Fundamental stack operations

 stack.push(object)

 Adds the object to the top of the stack; the item pushed is

also returned as the value of push

 object = stack.pop(); // object is of type “E”

 Removes the object at the top of the stack and returns it

 object = stack.peek(); // object is of type “E”

 Returns the top object of the stack but does not remove it

from the stack

 stack.empty()

 Returns true if there is nothing in the stack

4

Additional stack operation

 int i = stack.search(object);

 Returns the 1-based position of the element on the stack. That

is, the top element is at position 1, the next element is at

position 2, and so on.

 Returns -1 if the element is not on the stack

5

Some uses of stacks

 Stacks are used for:

 Any sort of nesting (such as parentheses)

 Evaluating arithmetic expressions (and other sorts

of expression)

 Implementing function or method calls

 Keeping track of previous choices (as in

backtracking)

 Keeping track of choices yet to be made (as in

creating a maze)

6

Expression evaluation

 Almost all higher-level languages let you evaluate

expressions, such as 3*x+y or m=m+1

 The simplest case of an expression is one number (such as

3) or one variable name (such as x)

 These are expressions

 In many languages, = is considered to be an operator

 Its value is (typically) the value of the left-hand side, after the

assignment has occurred

 Situations sometimes arise where you want to evaluate

expressions yourself, without benefit of a compiler

7

Performing calculations

 To evaluate an expression, such as 1+2*3+4, you

need two stacks: one for operands (numbers), the

other for operators: going left to right,

 If you see a number, push it on the number stack

 If you see an operator,

 While the top of the operator stack holds an operator of equal

or higher precedence:

 pop the old operator

 pop the top two values from the number stack and apply

the old operator to them

 push the result on the number stack

 push the new operator on the operator stack

 At the end, perform any remaining operations

8

Example: 1+2*3+4

 1 : push 1 on number stack

 + : push + on op stack

 2 : push 2 on number stack

 * : because * has higher precedence than +, push * onto op stack

 3 : push 3 onto number stack

 + : because + has lower precedence than *:

 pop 3, 2, and *

 compute 2*3=6, and push 6 onto number stack

 push + onto op stack

 4 : push 4 onto number stack

 end : pop 4, 6 and +, compute 6+4=10, push 10; pop 10, 1, and +,
compute 1+10=11, push 11

 11 (at the top of the stack) is the answer

9

Handling parentheses

 When you see a left parenthesis, (, treat it as a low-

priority operator, and just put it on the operator stack

 When you see a right parenthesis ,), perform all the

operations on the operator stack until you reach the

corresponding left parenthesis; then remove the left

parenthesis

10

Handling variables

 There are two ways to handle variables in an

expression:

 When you encounter the variable, look up its value, and put

its value on the operand (number) stack

 This simplifies working with the stack, since everything

on it is a number

 When you encounter a variable, put the variable itself on

the stack; only look up its value later, when you need it

 This allows you to have embedded assignments, such as

12 + (x = 5) * x

11

Handling the = operator

 The assignment operator is just another operator

 It has a lower precedence than the arithmetic operators

 It should have a higher precedence than (

 To evaluate the = operator:

 Evaluate the right-hand side (this will already have
been done, if = has a low precedence)

 Store the value of the right-hand side into the variable
on the left-hand side

 You can only do this if your stack contains variables
as well as numbers

 Push the value onto the stack

12

At the end

 Two things result in multiple special cases

 You frequently need to compare the priority of the current

operator with the priority of the operator at the top of the

stack—but the stack may be empty

 Earlier, I said: “At the end, perform any remaining

operations”

 There is a simple way to avoid these special cases

 Invent a new “operator,” say, _, and push it on the stack

initially

 Give this operator the lowest possible priority

 To “apply” this operator, just quit—you’re done

13

Some things that can go wrong

 The expression may be ill-formed:

 2 + 3 +

 When you go to evaluate the second +, there won’t be two

numbers on the stack

 1 2 + 3

 When you are done evaluating the expression, you have more

than one number on the stack

 (2 + 3

 You have an unmatched (on the stack

 2 + 3)

 You can’t find a matching (on the stack

 The expression may use a variable that has not

been assigned a value

