
STACK

1

2

What is a stack?

 A stack is a Last In, First Out (LIFO) data structure

 Anything added to the stack goes on the “top” of the

stack

 Anything removed from the stack is taken from the

“top” of the stack

 Things are removed in the reverse order from that in

which they were inserted

3

Fundamental stack operations

 stack.push(object)

 Adds the object to the top of the stack; the item pushed is

also returned as the value of push

 object = stack.pop(); // object is of type “E”

 Removes the object at the top of the stack and returns it

 object = stack.peek(); // object is of type “E”

 Returns the top object of the stack but does not remove it

from the stack

 stack.empty()

 Returns true if there is nothing in the stack

4

Additional stack operation

 int i = stack.search(object);

 Returns the 1-based position of the element on the stack. That

is, the top element is at position 1, the next element is at

position 2, and so on.

 Returns -1 if the element is not on the stack

5

Some uses of stacks

 Stacks are used for:

 Any sort of nesting (such as parentheses)

 Evaluating arithmetic expressions (and other sorts

of expression)

 Implementing function or method calls

 Keeping track of previous choices (as in

backtracking)

 Keeping track of choices yet to be made (as in

creating a maze)

6

Expression evaluation

 Almost all higher-level languages let you evaluate

expressions, such as 3*x+y or m=m+1

 The simplest case of an expression is one number (such as

3) or one variable name (such as x)

 These are expressions

 In many languages, = is considered to be an operator

 Its value is (typically) the value of the left-hand side, after the

assignment has occurred

 Situations sometimes arise where you want to evaluate

expressions yourself, without benefit of a compiler

7

Performing calculations

 To evaluate an expression, such as 1+2*3+4, you

need two stacks: one for operands (numbers), the

other for operators: going left to right,

 If you see a number, push it on the number stack

 If you see an operator,

 While the top of the operator stack holds an operator of equal

or higher precedence:

 pop the old operator

 pop the top two values from the number stack and apply

the old operator to them

 push the result on the number stack

 push the new operator on the operator stack

 At the end, perform any remaining operations

8

Example: 1+2*3+4

 1 : push 1 on number stack

 + : push + on op stack

 2 : push 2 on number stack

 * : because * has higher precedence than +, push * onto op stack

 3 : push 3 onto number stack

 + : because + has lower precedence than *:

 pop 3, 2, and *

 compute 2*3=6, and push 6 onto number stack

 push + onto op stack

 4 : push 4 onto number stack

 end : pop 4, 6 and +, compute 6+4=10, push 10; pop 10, 1, and +,
compute 1+10=11, push 11

 11 (at the top of the stack) is the answer

9

Handling parentheses

 When you see a left parenthesis, (, treat it as a low-

priority operator, and just put it on the operator stack

 When you see a right parenthesis ,), perform all the

operations on the operator stack until you reach the

corresponding left parenthesis; then remove the left

parenthesis

10

Handling variables

 There are two ways to handle variables in an

expression:

 When you encounter the variable, look up its value, and put

its value on the operand (number) stack

 This simplifies working with the stack, since everything

on it is a number

 When you encounter a variable, put the variable itself on

the stack; only look up its value later, when you need it

 This allows you to have embedded assignments, such as

12 + (x = 5) * x

11

Handling the = operator

 The assignment operator is just another operator

 It has a lower precedence than the arithmetic operators

 It should have a higher precedence than (

 To evaluate the = operator:

 Evaluate the right-hand side (this will already have
been done, if = has a low precedence)

 Store the value of the right-hand side into the variable
on the left-hand side

 You can only do this if your stack contains variables
as well as numbers

 Push the value onto the stack

12

At the end

 Two things result in multiple special cases

 You frequently need to compare the priority of the current

operator with the priority of the operator at the top of the

stack—but the stack may be empty

 Earlier, I said: “At the end, perform any remaining

operations”

 There is a simple way to avoid these special cases

 Invent a new “operator,” say, _, and push it on the stack

initially

 Give this operator the lowest possible priority

 To “apply” this operator, just quit—you’re done

13

Some things that can go wrong

 The expression may be ill-formed:

 2 + 3 +

 When you go to evaluate the second +, there won’t be two

numbers on the stack

 1 2 + 3

 When you are done evaluating the expression, you have more

than one number on the stack

 (2 + 3

 You have an unmatched (on the stack

 2 + 3)

 You can’t find a matching (on the stack

 The expression may use a variable that has not

been assigned a value

